Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
J Infect Dev Ctries ; 18(3): 427-434, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635618

RESUMO

INTRODUCTION: The purpose of this study is to assess the levels of knowledge, attitude, and practice (KAP) related to TB, and to analyze the differences among various demographic groups. METHODOLOGY: A total of 621 students enrolled in Qingdao High School, coming from high TB burden settings. The cross-sectional study was conducted from May to July of 2022. Participants completed an online questionnaire. Differences in knowledge and practice based on participant characteristics were analyzed using the Wilcoxon rank test and Kruskal-Wallis rank test. Group differences were assessed using a rank-based analysis of variance. RESULTS: The mean percentage of correct answers for TB knowledge and practice was 82.09% and 83.25%, respectively. Grade Three students showed higher knowledge and practice scores than Grade One or Grade Two students (t = -3.9935, p = 0.0002, t = 3.4537, p = 0.0018. 8.58 vs 7.94, 8.58 vs 8.23. t = 3.4562, p = 0.0018, t = -2.8688, p = 0.0128. 1.78 vs 1.61, 1.78 vs 1.64). A significant majority (78.42%) of students expressed fear of being affected by TB. 49.28% of the students would support and help TB patients. 88.08% of participants had heard of TB, with 72.94% learning about it at school, mainly through visual aids like posters. Information was predominantly obtained from online sources (websites, microblogs, WeChat, etc.). CONCLUSIONS: It is recommended to develop a TB curriculum for lower-grade students to enhance awareness of TB prevention through various means, including the internet and social media.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Tuberculose , Humanos , Estudos Transversais , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Estudantes , China/epidemiologia , Inquéritos e Questionários
2.
Cell Death Dis ; 15(4): 257, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605011

RESUMO

SARS-CoV-2 has spread rapidly worldwide and infected hundreds of millions of people worldwide. With the increasing number of COVID-19 patients discharged from hospitals, the emergence of its associated complications, sequelae, has become a new global health crisis secondary to acute infection. For the time being, such complications and sequelae are collectively called "Post-acute sequelae after SARS-CoV-2 infection (PASC)", also referred to as "long COVID" syndrome. Similar to the acute infection period of COVID-19, there is also heterogeneity in PASC. This article reviews the various long-term complications and sequelae observed in multiple organ systems caused by COVID-19, pathophysiological mechanisms, diagnosis, and treatment of PASC, aiming to raise awareness of PASC and optimize management strategies.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Progressão da Doença
4.
Chin Med ; 19(1): 38, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429819

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory genetic disease, mainly manifesting in the skin. Conventional therapies, such as glucocorticosteroids and corticosteroids, have adverse effects that limit drug use. Hence, it is imperative to identify a new therapeutic strategy that exhibits a favorable safety profile. Shi-Bi-Man (SBM) is a safe herbal supplement sourced from various natural plants, including ginseng, angelica sinensis, polygonum multiflorum, and aloe vera. PURPOSE: We aimed to find a potential treatment for psoriasis and investigate the underlying mechanism through which SBM alleviates psoriatic-like skin inflammation in mice. METHODS: We investigated the effects of supplementing with SBM through intragastric administration or smear administration in a murine model of imiquimod-induced psoriasis. The changes in body weight and Psoriasis Area and Severity Index (PASI) score were recorded throughout the entire process. Additionally, we used hematoxylin-eosin staining to observe the skin structure and performed single-cell RNA sequencing to explore the underlying mechanism of SBM in influencing the psoriasis-like phenotype. Immunofluorescence was conducted to verify our findings. Furthermore, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to investigate the impact of Tetrahydroxy stilbene glycoside (TSG) on the expression levels of IL23 in HaCaT cells. RESULTS: SBM remarkably alleviated the psoriasis-like phenotype by inhibiting IL-23/Th17 cell axis. Single-cell RNA sequencing analysis revealed a decrease in the expression of Il17 and Il23 in keratinocytes and T cells, concomitant with a reduction in the proportion of Th17 cells. Meanwhile, the activation of endothelial cells was inhibited, accompanied by a decrease in the expression of Cxcl16. In vitro, the addition of TSG to HaCaT cells resulted in significant suppression of IL23 expression stimulated by tumor necrosis factor-alpha (TNF-α).

5.
Adv Sci (Weinh) ; : e2308771, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477509

RESUMO

Endotoxemia-related acute liver injury has a poor prognosis and high mortality, and macrophage polarization plays a central role in the pathological process. Pregnane X receptor (PXR) serves as a nuclear receptor and xenosensor, safeguarding the liver from toxic stimuli. However, the effect and underlying mechanism of PXR activation on endotoxemic liver injury remain largely unknown. Here, the expression of PXR is reported in human and murine macrophages, and PXR activation modified immunotypes of macrophages. Moreover, PXR activation significantly attenuated endotoxemic liver injury and promoted macrophage M2 polarization. Macrophage depletion by GdCl3 confirmed the essential of macrophages in the beneficial effects observed with PXR activation. The role of PXR in macrophages is further validated using AAV8-F4/80-Pxr shRNA-treated mice; the PXR-mediated hepatoprotection is impaired, and M2 polarization enhancement is blunted. Additionally, treatment with PXR agonists inhibited lipopolysaccharide (LPS)-induced M1 polarization and favored M2 polarization in BMDM, Raw264.7, and THP-1 cells. Further analyses revealed an interaction between PXR and p-STAT6 in vivo and in vitro. Moreover, blocking Pxr or Stat6 abolished the PXR-induced polarization shift. Collectively, macrophage PXR activation attenuated endotoxin-induced liver injury and regulated macrophage polarization through the STAT6 signaling pathway, which provided a potential therapeutic target for managing endotoxemic liver injury.

6.
Small ; : e2311161, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456389

RESUMO

The search for new phases is an important direction in materials science. The phase transition of sulfides results in significant changes in catalytic performance, such as MoS2 and WS2 . Cubic pentlandite [cPn, (Fe, Ni)9 S8 ] can be a functional material in batteries, solar cells, and catalytic fields. However, no report about the material properties of other phases of pentlandite exists. In this study, the unit-cell parameters of a new phase of pentlandite, sulfur-vacancy enriched hexagonal pentlandite (hPn), and the phase boundary between cPn and hPn are determined for the first time. Compared to cPn, the hPn shows a high coordination number, more sulfur vacancies, and high conductivity, which result in significantly higher hydrogen evolution performance of hPn than that of cPn and make the non-nano rock catalyst hPn superior to other most known nanosulfide catalysts. The increase of sulfur vacancies during phase transition provides a new approach to designing functional materials.

7.
Water Res ; 255: 121459, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513370

RESUMO

Capture and immobilization of 137Cs is urgent for radioactive contamination remediation and spent fuel treatment. Herein, an effective all-in-one treatment method to simultaneously adsorb and immobilize Cs+ without high-temperature treatment is proposed. According to the strategy of incorporating high-valency metal ions into molybdates to increase the material stability and affinity towards radionuclides, layered HMMoO6·nH2O (M = Ta (1), Nb (2)) are prepared. Both materials exhibit excellent acid resistance (even 15 mol/L HNO3). They maintain remarkable adsorption capacity for Cs+ in 1 mol/L HNO3 solutions and can selectively capture Cs+ under excessive competitive ions. Furthermore, they show successful cleanup for actual 137Cs-liquid-wastes generated during industrial production. In particular, adsorbed Cs+ can be firmly immobilized in interlayer spaces of materials due to the highly stable anionic framework. The removal mechanism is attributed to ion exchange between Cs+ and interlayer H+ by multiple characterizations. Study of the structure-function relationship shows that the occurrence of Cs+ ion exchange is closely related to plate-like layered structure. This work develops an efficient all-in-one treatment method for capturing and immobilizing radiocesium by ultra-stable inorganic solid acid materials with low energy consumption and high safety for radionuclide remediation.

8.
Angew Chem Int Ed Engl ; 63(19): e202402123, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38453654

RESUMO

Triplex DNA switches are attractive allosteric tools for engineering smart nanodevices, but their poor triplex-forming capacity at physiological conditions limited the practical applications. To address this challenge, we proposed a low-entropy barrier design to facilitate triplex formation by introducing a hairpin duplex linker into the triplex motif, and the resulting triplex switch was termed as CTNSds. Compared to the conventional clamp-like triplex switch, CTNSds increased the triplex-forming ratio from 30 % to 91 % at pH 7.4 and stabilized the triple-helix structure in FBS and cell lysate. CTNSds was also less sensitive to free-energy disturbances, such as lengthening linkers or mismatches in the triple-helix stem. The CTNSds design was utilized to reversibly isolate CTCs from whole blood, achieving high capture efficiencies (>86 %) at pH 7.4 and release efficiencies (>80 %) at pH 8.0. Our approach broadens the potential applications of DNA switches-based switchable nanodevices, showing great promise in biosensing and biomedicine.


Assuntos
DNA , Concentração de Íons de Hidrogênio , DNA/química , Humanos , Entropia , Conformação de Ácido Nucleico , Técnicas Biossensoriais
9.
Arch Virol ; 169(3): 49, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366289

RESUMO

Three dsRNA segments were detected in Fusarium pseudograminearum strain CF14029, a pathogen causing Fusarium crown rot in China. Characterization and sequence analysis confirmed that these dsRNA sequences originated from the same virus. The viral genome consists of three dsRNA segments: dsRNA1 (3,560 nt in length), encoding an RNA-dependent RNA polymerase (RdRp), dsRNA2 (2,544 nt in length), encoding a hypothetical protein, and dsRNA3 (2,478 nt in length), encoding a putative coat protein (CP). Phylogenetic analysis based on the RdRp and CP amino acid sequences revealed a high degree of similarity of this virus to members of the genus Alternavirus, family Alternaviridae, isolated from other Fusarium fungi. As a novel member of the genus Alternavirus, this virus was provisionally named "Fusarium pseudograminearum alternavirus 1" (FpgAV1). Like other alternaviruses found in Fusarium species, the positive-sense strand of each genomic dsRNA of FpgAV1 possesses a poly(A) tail and a distinctive 5'-terminal octamer sequence (5'-GCT GTG TG-3'). This is the first report of the genomic sequence of an alternavirus identified in F. pseudograminearum.


Assuntos
Fusarium , Fusarium/genética , Triticum/microbiologia , Filogenia , Genoma Viral , RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética , Doenças das Plantas/microbiologia
11.
Plants (Basel) ; 13(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276786

RESUMO

Plant rhizosphere microorganisms play an important role in modulating plant growth and productivity. This study aimed to elucidate the diversity of rhizosphere microorganisms at the flowering and fruiting stages of rapeseed (Brassica napus). Microbial communities in rhizosphere soils were analyzed via high-throughput sequencing of 16S rRNA for bacteria and internal transcribed spacer (ITS) DNA regions for fungi. A total of 401 species of bacteria and 49 species of fungi in the rhizosphere soil samples were found in three different samples. The composition and diversity of rhizosphere microbial communities were significantly different at different stages of rapeseed growth. Plant-growth-promoting rhizobacteria (PGPRs) have been widely applied to improve plant growth, health, and production. Thirty-four and thirty-one PGPR strains were isolated from the rhizosphere soil samples collected at the flowering and fruiting stages of rapeseed, respectively. Different inorganic phosphorus- and silicate-solubilizing and auxin-producing capabilities were found in different strains, in addition to different heavy-metal resistances. This study deepens the understanding of the microbial diversity in the rapeseed rhizosphere and provides a microbial perspective of sustainable rapeseed cultivation.

12.
Pestic Biochem Physiol ; 198: 105723, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225078

RESUMO

Cyclobutrifluram (TYMIRIUM® technology), a new succinate dehydrogenase inhibitor (SDHI) fungicide, is currently being registered by SYNGENTA for controlling Fusarium crown rot (FCR) of wheat in China. The application of 15 or 30 g of active ingredient/100 kg seed of cyclobutrifluram significantly reduced pre-emergence damping-off, discoloration on the stem base and formation of whiteheads caused by FCR. The EC50 values of cyclobutrifluram for 60 isolates of F. pseudograminearum, 30 isolates of F. asiaticum and 30 isolates of F. graminearum ranged from 0.016 to 0.142 mg L-1, 0.010 to 0.041 mg L-1 and 0.012 to 0.059 mg L-1, respectively. One hundred and seven cyclobutrifluram-resistant (CR) mutants were obtained from three Fusarium species isolates, with ten types of mutations identified in Sdh genes. Three Fusarium species isolates exhibited similar resistance mechanisms, with the most prevalent mutations, SdhC1A83V and SdhC1R86K, accounting for 61.68% of mutants. The CR mutants possessed comparable or slightly impaired fitness compared to the corresponding parental isolates. The CR mutants carrying FpSdhBH248Y/Q/D exhibited increased sensitivity to fluopyram. An overall moderate risk of resistance development in three Fusarium species was recommended for cyclobutrifluram.


Assuntos
Fusarium , Fusarium/genética , Triticum , Doenças das Plantas/prevenção & controle , Mutação , Ácido Succínico
13.
Plant Dis ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277654

RESUMO

Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, significantly impacts wheat yield and quality in China's Huanghuai region. The rapid F. pseudograminearum epidemic and FCR outbreak within a decade remain unexplained. In this study, two high-quality, chromosome-level genomes of F. pseudograminearum strains producing 3-acetyl-deoxynivalenol (3AcDON) and 15-acetyl-deoxynivalenol (15AcDON) toxins were assembled. Additionally, 38 related strains were resequenced. Genomic differences such as single nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations (SVs) among F. pseudograminearum strains were analyzed. The whole-genome SNP locus based population classification mirrored the toxin chemotype (3AcDON and 15AcDON)-based classification, indicating the presence of genes associated with the trichothecene toxin gene cluster. Further analysis of differential SNP, indel, and SV loci between the 3AcDON and 15AcDON populations revealed a predominant connection to secondary metabolite synthesis genes. Notably, the majority of the secondary metabolite biosynthesis gene cluster (SMGC) loci were located in SNP-dense genomic regions, suggesting high mutability and a possible contribution to F. pseudograminearum population structure and environmental adaptability. This study provides insightful perspectives on the distribution and evolution of F. pseudograminearum, and for forecasting the spread of wheat FCR, thereby aiding in the development of preventive measures and control strategies.

14.
J Sci Food Agric ; 104(3): 1572-1582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819595

RESUMO

BACKGROUND: Leakage of graphene into the environment has resulted from its increasing use. Although the impact of graphene on ecosystems is already in full swing, information regarding its impact on plants is lacking. In particular, the effects of graphene on plant growth and development vary, and basic information on the regulation of carbon and nitrogen metabolism is missing. In the current study, the way in which graphene (0, 25, 50, 100, and 200 g kg-1 ) affects maize seedlings was studied in terms of morphological and biochemical indicators. The purpose of this study was to understand better how graphene regulates plant carbon and nitrogen metabolism and to understand its interactions with leaf structure and plant growth. RESULTS: The results showed that 50 g kg-1 graphene increased plant height, stem diameter, leaf area, and dry weight; however, this was inhibited by the high level of graphene (200 g kg-1 ). Further studies indicated that different concentrations of graphene could increase leaf thickness and vascular bundle area as well as the net photosynthetic rate (Pn) of leaves; 25 and 50 g kg-1 graphene enhanced the leaves stomatal conductance (Cond), transpiration rate (Tr), intercellular carbon dioxide (Ci), and chlorophyll content. Higher concentrations decreased the above indicators. At 50 g kg-1 , graphene increased the activity of carbon/nitrogen metabolism enzymes by increasing carbon metabolites (fructose, sucrose, and soluble sugars) and soluble proteins (nitrogen metabolites). These enzymes included sucrose synthase (SS), sucrose phosphate synthase (SPS), nitrate reductase (NR), glutamine synthase (GS), and glutamate synthase (GOGAT). CONCLUSION: These results indicate that graphene can regulate the activities of key enzymes involved in carbon and nitrogen metabolism effectively and supplement nitrogen metabolism through substances produced by carbon metabolism by improving photosynthetic efficiency, thus maintaining the balance between carbon and nitrogen and promoting plant growth and development. The relationship between these indexes explained the mechanism by which graphene supported the growth of maize seedlings by enhancing photosynthetic carbon metabolism and maintaining metabolic balance. For maize seedling growth, graphene treatment with 50 g kg-1 soil is recommended. © 2023 Society of Chemical Industry.


Assuntos
Grafite , Zea mays , Zea mays/metabolismo , Ecossistema , Fotossíntese , Plantas/metabolismo , Plântula/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo
15.
Nature ; 625(7993): 148-156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993710

RESUMO

The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , Memória Imunológica , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/imunologia , Memória Imunológica/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Mutação
16.
J Sci Food Agric ; 104(2): 686-697, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654243

RESUMO

BACKGROUND: Ethanol and osmotic stresses are the major limiting factors for brewing strong beer with high-gravity wort. Breeding of yeast strains with high osmotic and ethanol tolerance and studying very-high-gravity (VHG) brewing technology is of great significance for brewing strong beer. RESULTS: This study used an optimized microbial microdroplet culture (MMC) system for adaptive laboratory evolution (ALE) of Saccharomyces cerevisiae YN81 to improve its tolerance to osmotic and ethanol stress. Meanwhile, we investigated the VHG and VHG with added ethanol (VHGAE) brewing processes for the evolved mutants in brewing strong beer. The results showed that three evolved mutants were obtained; among them, the growth performance of YN81mc-8.3 under 300, 340, 380, 420 and 460 g L-1 sucrose stresses was greater than that of the other strains. The ethanol tolerance of YN81mc-8.3 was 12%, which was 20% higher than that of YN81. During strong-beer brewing in a 100 L cylindrical cone-bottom tank, the sugar utilization and ethanol yield of YN81mc-8.3 outperformed those of YN81 in both the VHG and VHGAE brewing processes. Measurement of the diacetyl concentration showed that YN81mc-8.3 had a stronger diacetyl reduction ability; in particular, the real degree of fermentation of beers brewed by YN81mc-8.3 in VHG and VHGAE brewing processes was 75.35% and 66.71%, respectively - higher than those of the two samples brewed by YN81. Meanwhile, the visual, olfactive and gustative properties of the strong beer produced by YN81mc-8.3 were better than those of the other beers. CONCLUSION: In this study, the mutant YN81mc-8.3 and the VHGAE brewing process were optimal and represented a better alternative strong-beer brewing process. © 2023 Society of Chemical Industry.


Assuntos
Diacetil , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Melhoramento Vegetal , Fermentação , Etanol , Cerveja
17.
Front Microbiol ; 14: 1250151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075875

RESUMO

Quorum sensing (QS) is one of the most well-studied cell-to-cell communication mechanisms in microorganisms. This intercellular communication process in Saccharomyces cerevisiae began to attract more and more attention for researchers since 2006, and phenylethanol, tryptophol, and tyrosol have been proven to be the main quorum sensing molecules (QSMs) of S. cerevisiae. In this paper, the research history and hotspots of QS in S. cerevisiae are reviewed, in particular, the QS system of S. cerevisiae is introduced from the aspects of regulation mechanism of QSMs synthesis, influencing factors of QSMs production, and response mechanism of QSMs. Finally, the employment of QS in adaptation to stress, fermentation products increasing, and food preservation in S. cerevisiae was reviewed. This review will be useful for investigating the microbial interactions of S. cerevisiae, will be helpful for the fermentation process in which yeast participates, and will provide an important reference for future research on S. cerevisiae QS.

18.
J Clin Nurs ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108199

RESUMO

BACKGROUND: While previous research has established that resilience is affected by various factors, these studies have primarily focussed on individual variables associated with resilience, without providing insights into how to influence the rate of change in resilience. AIM: To examine the trajectory of resilience and identify the factors associated with changes in resilience among spousal caregivers of patients with newly diagnosed advanced cancer receiving treatment during the first 6 months. DESIGN: An observational longitudinal study. METHODS: A total of 312 spousal caregivers of patients with newly diagnosed advanced cancer were recruited from January 2022 to December 2022 in Yancheng, China. Three data collection points were established, spanning from the first month to 6 months after initial cancer treatment. A latent growth model was employed to depict the resilience trajectory at various time points. A latent growth model with time-invariant covariates was adopted to determine the factors influencing resilience trajectory. The study adhered to the STROBE checklist for proper reporting. RESULTS: Throughout the follow-up period, the participants experienced a significant increase in resilience. Gender, family income, the patient's health status, spirituality and belief in familism were significantly associated with the baseline resilience level. Moreover, family income, the patient's health status, spirituality, caregiver burden and belief in familism were significantly associated with the rate of resilience change over time. CONCLUSIONS: Spousal caregivers demonstrated a linear increase in resilience during the first 6 months after initial treatment. Meanwhile, changes in resilience were influenced by multiple factors during the early phase of cancer treatment. Thus, more attention should be paid to early identification and implementation of targeted interventions. RELEVANCE TO CLINICAL PRACTICE: Healthcare professionals should understand the change in resilience among spousal caregivers and conduct timely mental health interventions to enhance the resilience of families affected by cancer. PATIENT OR PUBLIC CONTRIBUTION: The Guidance for Reporting Involvement of Patients and the Public-Short Form reporting checklists were used to improve patient and public involvement.

19.
J Agric Food Chem ; 71(51): 20643-20653, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108286

RESUMO

Fusarium graminearum exhibited natural resistance to a majority of succinate dehydrogenase inhibitor fungicides (SDHIs) and the molecular mechanisms responsible for the natural resistance were still unknown. Succinate dehydrogenase subunit C (SdhC) is an essential gene for maintaining succinate-ubiquinone oxidoreductase (SQR) function in fungi. In F. graminearum, a paralog of FgSdhC named as FgSdhC1 was identified. Based on RNA-Seq and qRT-PCR assay, we found that the expression level of FgSdhC1 was very low but upregulated by SDHIs treatment. Based on reverse genetics, we demonstrated that FgSdhC1 was an inessential gene in normal growth but was sufficient for maintaining SQR function and conferred natural resistance or reduced sensitivity toward SDHIs. Additionally, we found that the standard F. graminearum isolate PH-1 had high sensitivity to a majority of SDHIs. A single nucleotide variation (C to T) in the FgSdhC1 of isolate PH-1, resulting in a premature termination codon (TAA) replacing the fourth amino acid glutamine (Q), led to the failure of FgSdhC1 to perform functions of conferring nature resistance. These results established that a dispensable paralogous gene determined SDHIs resistance in natural populations of F. graminearum.


Assuntos
Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Fusarium/genética , Fusarium/metabolismo
20.
Heliyon ; 9(11): e21898, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034642

RESUMO

Background: and Purpose: As the number of international students from Belt and Road Initiative countries continues to increase in China, it is essential to find methods to improve cross-cultural adaptation in the host country, a crucial aspect of the experiences of international nursing students. Therefore, this study aimed to investigate the change in cross-cultural adaptation of international nursing students during the first year in China. Methods: Data collection was conducted for international nursing students (n = 108) between September 2019 and August 2020, focusing on sociocultural adaptation, academic adaptation, and academic performance of international nursing students using validated questionnaires. Results: The mean score at the follow-up time verified an increased level of sociocultural and academic adaptation and academic performance. Academic adaptation is a complete mediator between sociocultural adaptation and academic performance at two-time points, and the size of the mediation effect accounted for 95.9 % of the total effect in six months and 99.0 % in one year. Conclusions: The findings emphasized the importance of sociocultural and academic adaptation in cross-cultural adaptation and suggest that educational institutions should provide learning environments supporting these factors to ensure academic success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...